A Multigrid Algorithm for Higher Order Finite Elements on Sparse Grids

نویسنده

  • HANS-JOACHIM BUNGARTZ
چکیده

For most types of problems in numerical mathematics, efficient discretization techniques are of crucial importance. This holds for tasks like how to define sets of points to approximate, interpolate, or integrate certain classes of functions as accurate as possible as well as for the numerical solution of differential equations. Introduced by Zenger in 1990 and based on hierarchical tensor product approximation spaces, sparse grids have turned out to be a very efficient approach in order to improve the ratio of invested storage and computing time to the achieved accuracy for many problems in the areas mentioned above. Concerning the sparse grid finite element discretization of elliptic partial differential equations, recently, the class of problems that can be tackled has been enlarged significantly. First, the tensor product approach led to the formulation of unidirectional algorithms which are essentially independent of the number d of dimensions. Second, techniques for the treatment of the general linear elliptic differential operator of second order have been developed, which, with the help of domain transformation, enable us to deal with more complicated geometries, too. Finally, the development of hierarchical polynomial bases of piecewise arbitrary degree p has opened the way to a further improvement of the order of approximation. In this paper, we discuss the construction and the main properties of a class of hierarchical polynomial bases and present a symmetric and an asymmetric finite element method on sparse grids, using the hierarchical polynomial bases for both the approximation and the test spaces or for the approximation space only, resp., with standard piecewise multilinear hierarchical test functions. In both cases, the storage requirement at a grid point does not depend on the local polynomial degree p, and p and the resulting representations of the basis functions can be handled in an efficient and adaptive way. An advantage of the latter approach, however, is the fact that it allows the straightforward implementation of a multigrid solver for the resulting system which is discussed, too.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whitney Elements on Sparse Grids

The aim of this work is to generalize the idea of the discretizations on sparse grids to discrete differential forms. The extension to general l-forms in d dimensions includes the well known Whitney elements, as well as H(div; Ω)and H(curl; Ω)-conforming mixed finite elements. The formulation of Maxwell’s equations in terms of differential forms gives a crucial hint how they should be discretiz...

متن کامل

Concepts for higher order finite elements on sparse grids

On the way to an efficient implementation of finite element algorithms related to the pand h-p-versions on sparse grids, we present a general concept for the construction of hierarchical bases of higher order suitable for sparse grid methods. For the solution of partial differential equations, this approach allows us to profit both from the efficiency of sparse grid discretizations and from the...

متن کامل

The hp-multigrid method applied to hp-adaptive refinement of triangular grids

Recently the hp version of the finite element method, in which adaptivity occurs in both the size, h, of the elements and in the order, p, of the approximating piecewise polynomials, has received increasing attention. It is desirable to combine this optimal order discretization method with an optimal order algebraic solution method, such as multigrid. An intriguing notion is to use the values o...

متن کامل

Sparse-grid finite-volume multigrid for 3D-problems

We introduce a multigrid algorithm for the solution of a second order elliptic equation in three dimensions. For the approximation of the solution we use a partially ordered hierarchy of nite-volume discretisations. We show that there is a relation with semicoarsening and approximation by more-dimensional Haar wavelets. By taking a proper subset of all possible meshes in the hierarchy, a sparse...

متن کامل

The Analysis of Multigrid Algorithms with Nonnested Spaces or Noninherited Quadratic Forms

We provide a theory for the analysis of multigrid algorithms for symmetric positive definite problems with nonnested spaces and noninherited quadratic forms. By this we mean that the form on the coarser grids need not be related to that on the finest, i.e., we do not stay within the standard variational setting. In this more general setting, we give new estimates corresponding to the "V cycle, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997